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ABSTRACT

Fluorescence-based measurements are a standard tool for characterizing the thermodynamic properties of DNA systems. Nonetheless, experimental melt data ob-
tained from polymerase chain-reaction (PCR) machines (for example) often leads to signals that vary significantly between datasets. In many cases, this lack of
reproducibility has led to difficulties in analyzing results and computing reasonable uncertainty estimates. To address this problem, we propose a data analysis
procedure based on constrained, convex optimization of affine transformations, which can determine when and how melt curves collapse onto one another. A key
aspect of this approach is its ability to provide a reproducible and more objective measure of whether a collection of datasets yields a consistent “universal” signal
according to an appropriate model of the raw signals. Importantly, integrating this validation step into the analysis hardens the measurement protocol by allowing one
to identify experimental conditions and/or modeling assumptions that may corrupt a measurement. Moreover, this robustness facilitates extraction of thermo-
dynamic information at no additional cost in experimental time. We illustrate and test our approach on experiments of Forster resonance energy transfer (FRET) pairs

used study the thermodynamics of DNA loops.

1. Introduction

Experimental studies of DNA systems must constantly ensure that
measurements are reproducible. However, cost and complexity render
this task challenging [1]. DNA preparation typically requires many
expensive ingredients. Moreover, large samples are difficult to maintain
at uniform temperatures, and, in the case of annealing studies, require
infeasibly long heating cycles [1,2]. As a result, sample volumes are
often limited to tens of microliters or less, so that even small pipetting
and preparation errors yield signal-to-noise ratios that are smaller than
one. In addition, these problems sometimes conflate with human error
and sample contamination, making it difficult to identify the precise
factors affecting data quality [1].

For fluorescence-based studies of DNA melting, these problems are
so severe that scientists have tended to underutilize annealing data for
quantitative measurements of thermodynamic parameters. Most ana-
lyses of melt curves only rely on identifying relative changes in their
shape (e.g. to identify shifts in melt temperatures or detect for the ex-
istence of a mutation [3]) and do not leverage the absolute scale of data
[4,5]. In some cases, data is discarded altogether [6]. Moreover, mea-
surements based on the van't Hoff equation, which could be used to
extract thermodynamic information about DNA, remain challenging at
best and lack methods for estimating uncertainties [7]. Thus, the
biology community would benefit from development of analyses that:
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(i) provide a greater understanding of the physical causes of variation in
fluorescence data; (ii) separate measurement signals from background
and noise; and (iii) enable uncertainty quantification (UQ) of experi-
mentally determined quantities [8].

To address these problems, we propose a class of convex optimi-
zation techniques based on affine transformations that can account for
and remove sources of variability in fluorescence data. The key idea
behind this approach is to model observed measurement signals .# as
linear combinations of various background corrections %, and a “uni-
versal” signal %, which we wish to deduce. Importantly, the relative
contribution of each source is encoded in a transformation parameter
that can be used to express # in terms of .%. To determine these
parameters, we minimize an objective function that compares in-
dependent realizations of # (.#°), which amounts to the requirement
that # is independent of .& (i.e. universal). Inequality and equality
constraints are also imposed to test the feasibility (in a mathematical
sense) of achieving the desired data collapse in a physically meaningful
way. Applications to Forster resonance energy transfer (FRET) data
confirm the validity of this approach and illustrate its benefits and
limitations [9-11]."

A key insight motivating this work is the idea that the active phy-
sical processes are often the same in “identically” prepared systems,
even if the raw data is not. Stated empirically, pipetting errors generally
do not change the available mechanisms of fluorescence, and all else
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being equal, background signals alone can cause significant dis-
crepancies between datasets due primarily to different amounts of im-
purities in well plates. These observations immediately suggest that
concentration-dependence is frequently responsible for variation in rea-
lizations of .#" and motivates the generic model of the form

N
ST = 20, % (T) + 3, £i #,(T)
(1)

where i indexes (experimental) datasets, T is the temperature and %,
are the unknown transformation coefficients associated with the ith
dataset. Notably, these coefficients admit a simple interpretation as the
concentration of the nth background source in sample i. We pursue
further refinements of this model in later sections.

A key theme that permeates this work is the practice of integrating
UQ into all steps of data analysis [12,13]. Here, we adopt a broad de-
finition of UQ as comprising those tasks that assess the quality of raw
data and characterize confidence in the predictions and information
extracted from it [8]. As we show, this perspective is useful in the
context of fluorescence experiments because it may be necessary to
distinguish “corrupt datasets” (e.g. due to impurities) from those that
are poorly scaled. Constrained optimization plays a critical role in this
exercise as a tool to identify datasets that are inconsistent with data
collapse, and thus candidates for rejection or further examination.
Likewise, constraints can verify whether # has properties consistent
with physical intuition. Such intermediate-stage assessments are im-
portant because they prevent us from continuing with downstream
analyses and experiments when bad data might unknowingly distort
results.” Moreover, we have found that this practice often leads to a
more systematic accounting of experimental procedures, thereby
creating opportunities to make them more robust. As a result, thermo-
dynamic properties of DNA can be extracted more reliably and with smaller
uncertainties, often with little to no additional experimental overhead.

The examples we consider also highlight a related aspect of our
analysis: we often do not need to specify the functional forms of any of
the terms in Eq. (1). Rather, we use this model to motivate a hierarchy
of transformations applied directly to the experimental data. This fact is
important, since it eliminates any issues associated with making poor
choices about the actual form of ., #, and %,, aside from needing to
satisfy Eq. (1). In starker terms, knowing only that the data is described by
an unspecified system of equations in the spirit of Eq. (1) may be sufficient to
determine # and all of the %, without further assumptions. From the
standpoint of uncertainty quantification (UQ), this surprising feature of
the analysis is especially useful, since it reduces so-called model-form
errors and simplifies downstream error estimates.

Despite these benefits, it is important to note that our analysis has
subjective elements.” Equation (1) remains a model, and as such, it
makes assumptions that may not always be valid, e.g. fluorescence is
linear in fluorophore concentration. Thus, any interpretation of the “true”
signal # is exactly that, an interpretation that can only be understood in the
context of these assumptions. We highlight this point because in some
cases, the remarkable degree of agreement between transformed data-
sets can mislead one into thinking that the corresponding # is “cor-
rect.” Thus we cannot overemphasize: data is not correct because it is
visually pleasing. In a related vein, we must guard against using con-
straints that force the data to look the way we want. While appropriate

21n the language of the broader UQ community, it is more conventional to say
that our emphasis is on validation, i.e. the task of assessing the extent to which
a model faithfully represents data [12]. The latter is always assumed to be
“true.” Given the technical challenges of generating high quality fluorescence
data, however, we adopt a modified perspective acknowledging that the ex-
periment may deviate from the intended “model” due to issues arising from
contamination, spoiling of ingredients, etc.

3 Qur approach is not unique in this regard. Data analysis in general is a
subjective endeavor.
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formulations of our analysis avoid this problem, their interpretations
still require some consideration, especially relative to unconstrained
optimization. Further discussion of these points is reserved for Sec. 5.

We also note that development of methods based on Eq. (1) is dif-
ficult to achieve in vacuo, since the goal is always to analyze experi-
mental data about which we often have intuition or a priori information.
Thus, our exposition follows the analysis of fluorescence data associated
with FRET pairs that can detect the opening and closing of DNA loops
[11]. We point out extensions and generalizations at appropriate places.

Finally we acknowledge that the main scientific content of this
manuscript (i.e. mathematical theory and analysis) may at times be
distinet from the core interests of our target audience (i.e. biologists and
biophysicists). Thus, in an effort to make this work more accessible to
readers, we have given each of the technical sections a theory-example
structure. While tending towards more abstract, the former motivates
many of the choices we make in the example sections. Taken collec-
tively, the latter carry the reader through a full implementation of our
transformation analysis applied to FRET experiments.

With this in mind, the rest of the manuscript is organized as follows.
Section 2 discusses sources of fluorescence in DNA samples, with an eye
towards motivating specific realizations of Eq. (1) for FRET data. Sec-
tion 3 develops the key modeling equations that describe this data,
including physics-based constraints. Section 4 presents the main opti-
mization tools we use to compute the affine transformations on datasets
. and explores the effects of using constraints. Section 5 discusses our
approach in the context of other data analysis methods and presents our
main conclusions. The Appendix provides an overview of the experi-
mental procedure used to generate the data; see also Ref. [11].

2. Provenance and characteristics of experimental data
2.1. Typical experimental data collection

Polymerase chain-reaction (PCR) machines are a common tool for
generating fluorescence data because this information can be used in
Single Nucleotide Polymorphism (SNP) genotyping to identify single
base mutations between allelles [14]. Of note, these techniques often
use intercalating dyes rather than FRET pairs [15-17]. While the true
universal signal should effectively be identical for either FRET or in-
tercalating dye experiments, the sample preparation and data analysis
procedures are likely to be distinet, owing to different baseline behavior
in the fluorophores; see Sec. 5 for more discussion on these points. For
concreteness, we restrict our attention to FRET-pair data.

A typical annealing protocol begins with sample preparation, which
may be automated or done by hand [18,19]. The sample is then pi-
petted into wells on a plastic tray, which are typically arranged in a
row-column format. Ideally, some subset of these wells contain N in-
dependent and identically prepared samples. This tray is loaded into a
heating block molded to the shape of the former. A plastic lid covers
this tray, and an additional heating block covers the top to prevent
condensation. Importantly, the top heating block has a small aperture
over each well so that optics can measure the fluorescence emitted from
each well. Electronics and post-processing algorithms then output
fluorescence counts per well per temperature increment into a data
format accessible to a computer and/or end-user.

A typical dataset output by this process is composed of a vector of
Nr temperatures and number of fluorescence counts per temperature.
We denote this pair (T,S;), where T =(T,5,.., Iy,) and
S; = (5i(T}), Si(T2), ..., Si(Tn;)). For notational simplicity, we hereafter
discontinue use of indices on T, recognizing that it is a discrete variable.

2.2. Example applied to FRET experiments
The FRET experiments that underpin our examples are designed to

measure the fraction of DNA rings that are open or closed as a function
of temperature. A system is composed of roughly 10’2 DNA loops, each
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Fig. 1. Cartoon of the system used to generate the data in this manuscript. The
system consists of the M13mp18 genome scaffold, which can be folded by the
oligomer shown in green. The folding is reported by two strands labeled with a
quencher/fluorophore pair. Top: the M13mpl8 genome is folded into large
loops of DNA with a “fold” oligomer (green) that binds to two locations: a high-
melting-temperature “anchor” site and a low-melting-temperature “melt” site.
The center section of this oligomer is hybridized with another oligomer (black)
that carries a quencher. Hybridization of the melt site is energetically favored at
low temperatures, whereas the unbound state is favored at high temperatures.
Bottom: When the M13mp18 loop is folded, a fluorophore (yellow) attached to
an oligomer (red) adjacent to the melt site is quenched by the quencher-func-
tionalized oligomer (black). When the M13mp18 loop is open, the fluorophore
is unquenched and can emit light (red star). Thus, the amount of emitted light
should provide a quantitative measurement of the temperature response of ring
opening for an ensemble of these systems. Different fold positions are achieved
by varying the anchor sequence. The melt, fluorophore, and quencher oligomer
sequences are conserved to ensure that the quencher/fluorophore pair experi-
ences the same local nucleotide environment, and thus has the same functional
form for its temperature-dependent fluorescence rate. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web
version of this article.)

having an attached oligomer that can close the ring by binding to an
interaction site located at a predetermined second location. When this
oligomer closes the ring, a FRET quencher/fluorophore pair is brought
together so that a fluorescent marker at the interaction site is quenched
(i.e. it stops emitting light). When the ring opens, the quencher is re-
moved from the local environment of the fluorophore, which becomes
active again. Thus, the total fluorescence F coming from the many co-
pies should be proportional to the total number of open rings. See
Fig. 1.

For these systems, it is well known that binding of the fold oligomer
to the melt site on the DNA has a lower energy than the open state.
Thus, at low enough temperatures (i.e. below 300 K), the rings should
predominantly be folded, so that the fluorescence signal goes to zero.
Conversely, at high enough temperatures, there is sufficient thermal
energy in the system to open essentially all of the rings, so that F(T)
should achieve its maximum value. In both extremes, the slope of F(T)
should also vanish, with a monotone increasing function connecting the
two temperature regimes. This function should attain its midpoint
(corresponding to the melt temperature) between 310 K and 320 K. See
the top plot of Fig. 2.

Actual measurements of the F (T) relationship follows the procedure
described in the previous section. These measurements are complicated
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Fig. 2. Idealized and characteristic fluorescence data from FRET experiments
(loop with 7450 bases and no anchor on the fold oligomer). Top: An idealized
and normalized fluorescence curve. Note in particular the (near) zero slopes at
low and high temperatures. Bottom: Raw data extracted from a PCR machine.
Note that the experimental data exhibits several features not present in the
idealized curve, such as non-zero slope at high temperature and large spread
between datasets.

by the fluorescence efficiency dependence of fluorophores on their local
environment, including temperature, neighboring DNA bases, and pH
[18]. As such, the fluorescence-temperature dependence was separately
measured in samples containing all but the fold oligomer, which is used
to bring the fluorophore and quencher in proximity to one another (cf.
the Appendix). Because of the difficulty of measuring the temperature-
response of a fully quenched (i.e. essentially dark) fluorophore, we
assumed that unquenched temperature response was an appropriate
approximation thereof. However, we note that neglecting the quenched
temperature response may not be appropriate for all systems. In this
case, Eq. (1) would require modification and corresponding experi-
ments to account for such effects. See also Sec. 5.

The bottom plot of Fig. 2 illustrates raw experimental data collected
from a PCR machine. In contrast to the top plot, this data exhibits
several features not present in the idealized fluorescence curve. In
particular, the minimum fluorescence value is offset from zero and the
slopes of each curve do not approach zero at high temperatures.
Moveover, it is obvious that there is O(1) variation between datasets.
Our main goal in the rest of this manuscript is to reconcile the differ-
ences between these two plots.

2.3. Sources of fluorescence in DNA samples

With this overall picture in mind, there are several sources of
fluorescence and related effects that inform a physical interpretation of
the raw data.
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Fig. 3. Examples of background signals and temperature-dependence of fluor-
escence. Top: Fluorescence signals from empty wells in a PCR machine. The
negative counts are physically meaningless and appear to arise from a vertical
offset in the data. Note also that the variation in scale (roughly 2000 counts) is
on the order of 10% of the full scale in Fig. 2. Bottom: Temperature dependence
of the fluorescence rate for fluorophore-functionalized oligomers in the absence
of quenchers. The top and bottom curves cannot be collapsed by simply trans-
lating the latter upwards, since they vary by 8000 and 6000 counts, respec-
tively. Note also that the temperature dependence of the fluorescence rate could
plausibly explain the non-zero slope of the raw data at high temperatures in the
bottom plot of Fig. 2.

Background Signals: Measuring the fluorescence of empty trays
often yields small but non-negligible and temperature-dependent sig-
nals; see Fig. 3. Physically, we attribute this background reading to
several sources. In particular, it is well known that many polymers
(including plastics in well-plate trays) exhibits some degree of auto-
fluorescence [20]. Automated calibration routines on empty trays at-
tempt to negate these effects, but such methods may not account for
temperature-dependence of the background if only run at a single
temperature. Moreover, calibration cannot account for natural varia-
tion in autofluorescence of different trays.

It is also important to consider the basic operating principles of the
photodetectors that collect the fluorescent light. Invariably these de-
vices convert optical power into either current or (analog) voltage.
Amplifier circuits may be required to boost the raw signals to ampli-
tudes that are readable by a computer. In each of these situations,
semiconductor components exhibit dark currents or voltages that ef-
fectively offset the raw signal by some constant but unknown amount, which
may differ by dataset; see Fig. 3. In certain cases, we have found that
these and related offsets may be as much as 10% of the nominal
fluorescence signal, thereby limiting reproducibility of measurements.

Temperature-dependent fluorescence rates: In addition to
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probing DNA topology (for example), fluorophores also exhibit their
own systematic responses to generic thermodynamic variables such as
temperature; see Sec. 2.2. Generally speaking, the latter behavior is
problematic because its effects must be decoupled from the measure-
ment signal before meaningful information can be extracted. Fig. 3 also
shows an example of the baseline temperature response of fluorophore
functionalized oligomers without quenchers. Notably, the signal is
nonlinear and changes by 25% or more. The raw datasets exhibit dif-
ferent vertical offsets (similar to the background data), suggesting that
it may difficult to accurately identify the relative change in fluorescence
due to temperature effects alone.

Non-identical Samples: Robust experimental protocols often call
for repeating experiments on independent and identically prepared
samples. In practice, however, it is difficult to ensure that they are all
identical to within detection thresholds, especially for typical DNA
experiments. Even when samples are pulled from the same feedstock,
pipetting errors can lead to variations in the volume of liquid in each
well. Thus, the characteristic scale of the data, which depends on the
total number of fluorophores in a sample, will fluctuate accordingly.

3. Key modeling equations
3.1. General case

In measurements designed to extract thermodynamic information
from DNA, the previously discussed sources of variation never appear
alone. Moreover, they may interact in such a way that they need to be
removed simultaneously. As a first step to achieving this, we invert Eq.
(1) for #, which yields

N
#(T) = 10, %(T) = Y, 5iBy(T)
e (2)

where 7; = 1/%; and 1,,; = 7,;/7,;. Even if the 7,; were known, Eq. (2)
only provides a single relationship between . and the unknown
quantities # and #%,. However, it is often possible (and in fact, neces-
sary) to design experiments that determine various background signals.
Thus, we temporarily assume that the %, (T) are known on some grid of
temperatures T. In the following example, we show how extensions of
Eq. (2) can be used to deduce the various %, (T) for FRET data. For later
convenience, we also define the vector of transformations parameters as
7, = (T4, Tje - Tv,) @and B = (A4, ..., 4,) as the vector of backgrounds.

Equation (2) merits several comments. In particular, the left-hand
side (LHS) is a realization independent quantity; that is, it does not
depend on i. This implies that the realization-dependence of the right-
hand side (RHS) has been eliminated. If we interpret % (T) as the “true”
or universal fluorescence signal associated with an idealized experi-
ment, Eq. (2) is a prescription for subtracting all sources of noise and
variation in the experimental data. We further recognize that the RHS
of Eq. (2) can be viewed as a mapping M (r;) acting on (.%;, B) with the
property that M(z; S;, B) = # for the correct transformation para-
meters. It is also important to note that for arbitrary t and constants x, w,
the mapping M has a bilinearity property that

M(z; x4 + w.¥j, xB; + wB;)
=xM (7; %, By) + wM (7 ¥}, By), (3)
Mt +wt'; ., B)=xM(r; ., B) + wM(t'; .&, B). (4
This observation plays a critical role in our constrained optimization

formulation and interpretation of subsequent results.

3.2. Example applied to FRET data

To make the interpretation of Eq. (2) more concrete, we postulate a
corresponding model for FRET data informed by the discussion in Sec.
2. In particular, we assume
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£(T) = &F (T)R(T) + b;B(T) + &, (5)

where f; is the fluorescence signal associated with the ith identically
prepared sample, F(T) is the “true” fluorescence signal associated with
the intended number of fluorophores (i.e. sample volume) assuming no
pipetting errors, R(T) is the temperature-dependence of the fluores-
cence rate, and B(T) is the temperature-dependent background signal.
We may substitute % (T) = F(T)R(T) in Eq. (5), rendering it consistent
with Eq. (2). Note also that F, R, and B are to be determined. The
sample-dependent, unknown coefficients d;, b;, and & respectively
characterize: (i) the degree to which the number of fluorophores de-
viates from its nominal value; (i) the level of background as de-
termined by the concentration of autofluorescing compounds in the ith
well; and (iii) any unknown constant offset associated with effects such
as bias voltages in the photodetector.
Provided R(T) # 0 we may invert Eq. (5) to find

RAeY)
"R(T)

B(T} Ci

F(I)=a "R(T) T R(TY’ 6)

where a;, b;, and ¢; are functions of their counterparts in Eq. (5). While
not strictly necessary to characterize the sources of fluorescence var-
iation, we supplement Eq. (6) with additional information about the
anticipated behavior of F(T). Such considerations are system specific
and play an important role in the optimization and UQ steps that
follow. In particular, we recall that at low and high temperatures, FRET
pairs should be fully quenched and unbound, respectively. Thus, it is
reasonable to assume that
limd—F = limE =0.
T—odT T—edT 2
Moreover, for the purposes of extracting thermodynamic informa-
tion from van't Hoff plots, it will eventually be necessary to scale the
data to [0,1], which we encode via

NmF(T)=0 8a)

JmF(T) =1 (8b)

We consider further refinements of Eqgs. (8a) and (8b) in Sec. 4 in
the context of constrained optimization.

By itself, Eq. (6) does not offer a route for simultaneously de-
termining F, R, and B, since R is coupled to F and the coefficients
(a;, b;, ¢;) are all unknown. To address this problem, we assume it is
possible to measure the fluorescence of fluorophores without the
quenchers,” which we model via the equation

i(T) = &R(T) + BB(T) + &,
= R(T) = a;ri(T) + B,B(T) + x;. (9)

See Ref. 11 and the Appendix for more details of these experiments.
See also the bottom plot of Fig. 3. By analogy with Eq. (6), 5(T) is a
specific realization of the fluorescence signal, R(T) is a universal
fluorescence signal associated with the intended number of fluor-
ophores in each well, and the triple (;, 5, ;) are unknown coefficients
associated with deviations from the nominal sample size, magnitude of
background effects, and constant offsets in measurements of functio-
nalized oligomers without quenchers. The remaining unknown function
B(T) can likewise be determined by measuring the fluorescence of
empty wells,” which we model with

“The corresponding measurements are performed on samples having all of
the reactants except for the fold oligomer, which contains the quencher; see
Fig. 1. Thus, the characterization of R(T) aims to measure the temperature-
dependence of the fluorophores as controlled by their local, unquenched en-
vironment.

51t may be more appropriate to determine B(T) from a mixture of all re-
agents, omitting only the fluorophore. In our specific examples, however, the
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bi(T) = CI‘B(T) + C’l’
ﬁB(T) = C(i[?,'(T) =+ ¢;. (10)

Again, b;(T) is the ith realization of a background signal and B(T) is
a universal background associated with a fixed concentration of auto-
fluorescing compounds in the sample wells. See the top plot of Fig. 3.

4. Optimization
4.1. Formulating the objective function

4.1.1. General case

If we assume Np total datasets indexed by i, then our method for
determining the set of unknown coefficients {r} = {z....,7p} is motivated
by the observation that # (T) is realization independent. That is, Eq. (2)
implies
#(T) = % =Mz ., B) = M(z;; ), B) = % (11)

for all pairs (i, j), where % is the ith realization of the universal signal.
This obviously implies that #(T) — %;(T) = 0, and moreover, for Ny

N : .
datasets, the sum of the ( 2D ] differences squared is zero. In other
words, the non-negative objective function

Zp(E) = Y, [M(%; % B) — M(3; %5, B)F 2 0
LT 12)

should activate the inequality (i.e. %% = 0) for the correct set of
transformation parameters {r}. For real data, transformed signals may
still contain small amounts of noise that do not entirely cancel, ensuring
an inactive inequality % > 0. However, it is nonetheless reasonable to
estimate the coefficients 7; by minimizing #’. That is,

{r} = argmin %, ({t})

17} (13)
are the affine parameters that yield # from the realizations of ..
Physically, Egs. (12) and (13) define the optimal transformation coef-
ficients as those that yield the smallest differences squared when
summed over all pairs of datasets at all temperatures.®

4.1.2. Example applied to FRET data

It is useful to see realizations of Eq. (12) applied to the model
equations for FRET data. If we denote %, as the objective corre-
sponding to the universal functions * = B, R, or F, we find

fﬂ;({p}) = Z [Clibi(T) + ¢ — ﬂjl’j(T) - cj]2
i, T (14)

L(x)) = Ziﬂ [cc,-r.-(T) + BB(T) + x;

= airi(T) = BB(T) - K] (15)

Ll =3, J,TR(T)*Z[aLfE(T) + bB(T) + ¢

— fljf:,(T) + bjB(T) + Cj]z, (16)

(footnote continued)
restrictive set of admissible affine transformations and agreement between
datasets after subtracting off background effects suggests that B(T) was suffi-
ciently well measured. Note that Egs. (9) and (10) likely ignore the effects of
impurities on B(T) and R(T), which might contribute additional multiplicative
terms.

®Other norms may provide equally valid transformation coefficients. For
example, replacing [M(%; 4, B) — M (%} .95, B)|? with
IM (%; .4, B) — M(;; .}, B)] (i.e. the L? norm) would likely yield reasonable
(but slightly different) transformations. We find L? to be a convenient choice
since it is well known and seems suited for our examples. See also Sec.V.
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where we denote the corresponding transformation parameters
p; = (a;, b)), @ = (@, B, %), and p; = (a;, by, ;).

Note that Eqgs. (14)-(16) suggests a hierarchical framework within
which we can determine F(T). Specifically, we first minimize %3,
which yields an estimate of B(T) at the vector of temperatures T in
terms of the mean values B;; viz

1 1
B(T) ~ — Bi(T)=—)> abi(T) + ¢
Np 2 Np Zl: a7

for the optimal {p}. We may then use this function to minimize #% and
thereby estimate R(T) in terms of the mean of R;(T). With these
quantities in hand, % can then be minimized to estimate F(T). An
important benefit of this approach is that we need not identify a
functional form for the intermediate quantities B(T) and R(T), since
they can be determined point-wise from the data directly.

4.2. Regularization and sufficient constraints

4.2.1. General case

Equation (13) does not lead to a unique set of coefficients. For ex-
ample, the objective %3 given in Eq. (14) is equal to zero if we seta; = 0
for all i and let ¢; = ¢; for all pairs (i, j). That is, transforming all of the
data to an arbitrary constant yields a meaningless, degenerate solution
for B(T). Equally problematic, for non-zero a;, minimization of %3 only
fixes the relative differences ¢; — ¢}, so individual ¢; are only determined
up to an additive constant. Conceptually, this issue of uniqueness
conflates two problems that must be understood (if not addressed) se-
parately.

First, Eqs. (12) and (13) only define the universal signals on a re-
lative scale. The coefficients {r} remain unchanged if we apply the same
affine transformation to all mappings M (7;; .%, B), i.e. if we substitute

aM (t; %, B) + ab = M(t;; a.%, aB) (18)

into .¢%, where a and b are arbitrary constants and B is the same as B
with an added constant offset source of noise proportional to b. In this
case, one finds that .% — a.%,, with the constant b canceling. As the
location of a minimum of a function is insensitive to the overall scale of
the function, {r} is therefore unchanged. This yields the somewhat
ironic conclusion that optimization of affine-parameters can only be
accomplished up to an affine transformation of the form given by Eq.
(18). To address this problem, we can add to the objective function a
regularization term

e =¢ Z 2
in (19)

where ¢ is a small parameter. Although discussed later in more detail,
we typically take ¢ = 10735, where § is a characteristic scale of the data.
Equation (19) has the effect of penalizing large values of the transfor-
mation coefficients, thereby forcing the optimization algorithm to
converge to the smallest admissible transformation coefficients that
yield agreement between signals.

A second problem arises from the fact that Egs. (6), (9) and (10)
assume contributions from one or more realization independent
sources, i.e. a background signal and/or constant offset. Thus, one al-
ways minimizes -#% by employing transformations that eliminate any
contribution from S; (i.e. by setting 7,; = 0) and project the signal en-
tirely onto background. The addition of a regularization term without
additional constraints will yield the unique but trivial solution in which
all transformation parameters are zero. Invariably, we recognize this as
a failure to impose a requirement that the signal .% have a character-
istic scale that is /(1) relative to #; i.e., the former must be informative
of the latter if the data analysis is to be meaningful. To achieve this, we
impose the constraint

T(l,i 2 Tmins (20)
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where 7,,; is always the coefficient multiplying .#/(T) in Eq. (2) and
Tmin > 0 is a user-defined, positive constant.

Several comments are in order. Firstly, the combination of reg-
ularization and a scale constraint are sufficient conditions to yield a
unique and non-trivial set of affine parameters. Thus, Egs. (13), (19),
and inequality (20) comprise the “simplest” formulation of the optimization
problem that remains well-posed. However, we are not guaranteed that the
corresponding transformation parameters are physically meaningful!
Moreover, Egs. (19) and (20) are not necessary conditions insofar as
other constraints can yield unique (but possibly different) transforma-
tion parameters. Thus, our simple formulation of the optimization
amounts to a modeling choice that may require scrutiny in special
circumstances. We consider such issues in more detail in Sec. 5.

4.2.2. Example applied to FRET data

Here we illustrate the outcomes of applying our simple formulation
to the hierarchy of Eqs. (14)—(16) for FRET data. We take Np = 24
datasets for background and N; = 12 for all other experiments, which
yields 276 and 66 distinct terms in the corresponding objective func-
tions (excluding regularization). An important preliminary step is to
normalize the datasets 5, b;, and f, according to
max; 7[[.5(T)I] (21)
where . stands for r, b, or f. This has the benefit of ensuring that all
signals (background, rate-dependence, FRET fluorescence) are nor-
malized to be ¢(1), so that the ratios b;/a; and ¢;/a; are rough estimates
of the noise-to-signal ratios. We can then directly compare transfor-
mation parameters as a means for deciding whether the optimization
has over-corrected for noise. We also set 1, = 1 for all optimizations,
since this requires that the universal signals be @(1). Moreover, having
normalized all of the data implies that the characteristic scale of the
data is unity, so that we may pick a small regularization parameter
€ < 1. For the analyses in this section, we choose € = 107%.

Fig. 4 shows the results of applying this analysis to the 24 back-
ground datasets in Fig. 3 by solving the optimization problem

(v} = argmin [ () + ¢ 3 (aF + )
P} i (22a)
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Fig. 4. Transformed background signals (color) with mean curve (black)
overlaid on top. The dots around zero are residuals of each curve relative to the
mean. Note that for the raw data in Fig. 3, the background signal is roughly
10% of F(T), while the residuals are roughly 10% of the background signal.
Thus, the uncertainty induced in using the mean background to correct f(T)
should be 1% or less. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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a; > 1. (22b)

We find that the simple bound on a; is active for three of the
transformations parameters, i.e. a; = 1 for only three indices i, with all
other a; > 1. Having estimated the p,, we can now use Egs. (10) and (17)
to estimate the function B(T) pointwise in temperature for use in
computing R(T) and F(T).” Figs. 5 and 6 show results of solving the
corresponding problems for R(T) and F(T). As before, the average of
the realizations R;(T) are used in the model for F.

The bottom-left plot of Fig. 7 shows the results of minimizing the
hierarchy of equations for the datasets shown in the top-left plot of the
figure (minimization for B(T) and R(T) is not shown but are qualita-
tively the same as Figs. 4 and 5). In this example, optimization yields a
unique, non-trivial solution, but it is clear from variation in the in-
dividual realizations F;(T) that there is no apparent way we can identify
a universal signal. The corresponding plots on the right show a different
case in which the data collapse is reasonable, but the universal signal
we find differs significantly from what we expect to find. In particular,
the high-temperature behavior exhibits significant negative slope, in-
consistent with the behavior of DNA rings that remain open. In this
situation, it is plausible that too much background has been subtracted
from the raw signals. In the next section, we discuss the origins of these
problems and point to methods for addressing them.

4.3. Problem-specific constraints

While Egs. (12), (19) and (20) are sufficient to guarantee a math-
ematically well-posed analysis, they do not necessarily yield physically
meaningful transformation parameters. As noted above, Fig. 7 illus-
trates a case in which transformed signals are obviously meaningless, as
well as one in which it is difficult to objectively discern if the analysis
was successful. Conceptually, there are two interrelated issues at stake.

First, we almost always have qualitative (or even quantitative) in-
formation about how data should behave, e.g. as expressed in Eq. (7) —
(8b). However, our simple analysis does not take this behavior into
account, only seeking to minimize %" subject to the scaling constraint.
This suggests that when possible, it is useful to leverage additional in-
formation about # as part of the optimization procedure to restrict the
admissible transformations to a set that yields physically reasonable
results. This can be achieved by imposing additional constraints, which
act as new modeling assumptions on the data.

Second, we must always allow for and test the possibility that there
is no meaningful set of transformations to #, either because the raw
data is somehow too corrupted or # is modeled incorrectly. Here again,
constraints play a critical role. We can impose, for example, the re-
striction that all transformed signals have small deviations from their
average. The ability to simultaneously satisfy this constraint along with
all of the other modeling assumptions leads to an “unbiased” criterion
for deciding that # exists and can be approximated. In the language of
constrained optimization, the mathematical feasibility of the problem
provides this information. Infeasibility can be interpreted as an in-
dication that no meaningful transformations exists or at least motivate
further examination of the data.

Invariably, the first of these issues is problem specific, whereas the
second is equally applicable to any data. With this overall picture With
this overall picture With this overall picture With this overall picture
With this overall picture With this overall picture We thus explore the
latter in the context of our general formulation of the optimization
framework in the next section, and reserve discussion of problem-spe-
cific considerations to Sec. 4.3.2.

7Moreover, the independent realizations B;(T) can be used individually to
propagate uncertainties associated with our inability to exactly determine the
universal signal, although we do not pursue this task here.
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Fig. 5. Transformation of data appearing in the bottom plot of Fig. 3. As before,
transformed datasets are in color, with the mean overlaid in black. Note that the
residuals are all less than 10-2, which is within 1% of the absolute scale of the
data. This is consistent with our observation on the residuals of the background
data in Fig. 4. (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)
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Fig. 6. Transformed signals (color) and mean curve (black) corresponding to
the data in Fig. 2. As before, note that the residuals are roughly 1% of the mean
curve. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)

4.3.1. General formulation of error constraints
If we assume Np total datasets, an estimate of the mean universal
signal is given by
1 R
o Z #(T)

D =1

= LS sm - Y nam
ND i n

# (T)

(23)

where T, = Np! 2. Tni is the sample mean value of the nth noise coef-
ficient. An obvious formulation of an error constraint is

% —# <o (24)

for some threshold o. In the context of constrained optimization, it is
advantageous to reformulate Eq. (24) as a linear inequality constraint,
since this allows us to recast the optimization in terms of quadratic
programming, for which there are a variety of numerical algorithms to
minimize objective functions [21]. Thus, we re-express Eq. (24) in
terms of a pair of equivalent constraints
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Fig. 7. Two examples of transformations computed according to the minimally well-posed formulation. Note that the ability to identify unique, non-trivial trans-
formation parameters is not sufficient to guarantee that the resulting melt curves are physically meaningful (Fig. 4 and 5 are representative of the corresponding B(T)
and R(T).). Left: Data before (top) and after (bottom) affine transformations. While the bottom curves yield the minimal sum of errors squared between all datasets,
they nonetheless fail to collapse onto a single curve. The mean is shown in dotted black and does not by itself indicate a problem without reference to the individual
curves in color. Right: Data before (top) and after (bottom) affine transformations. Note that while the transformed curves agree nicely with the mean (dotted black),
they have a roughly 10% decrease in value at high temperatures. This behavior is inconsistent with our physical expectations for this dataset and may indicate over-
subtraction of noise. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

W — W <o (25a)

- T <o (25b)

It is important to note that the value of o is a free parameter, which
allows modelers a degree of flexibility when constraining estimates of
% . As discussed in the previous section, good practice entails scaling the
raw data to an interval whose range is ¢/(1). In this case, the numerical
value of o is comparable to § = maxy[# (T)] — ming[# (T)]. In parti-
cular, we may interpret the ratio ¢/d as the characteristic maximum
allowable noise-to-signal ratio for the realizations #(T).

A key consequence of introducing the error-bound constraint is that
the expanded optimization problem encoded in Egs. (13), (19), (20) and
(25) may be infeasible, meaning that the constraints cannot be si-
multaneously satisfied. In other words, there are no transformation
parameters that collapse the data to within the desired threshold. The
benefit to allowing such infeasible problems is that the analysis auto-
matically encodes a fixed criterion by which we can judge the analysis
to be possible or not. While this criterion is partially subjective, it does
provide a mathematical and reproducible test that is not subject to the
opinions of a modeler.

4.3.2. Example of problem-specific constraints for FRET data

Equations (7) and (8) motivate constraints that can be used to test
the feasibility of data collapse conforming to physical expectation.
Consider first a reinterpretation of Eq. (7) in terms of linear inequality
constraints. Specifically, the condition that % — 0 for sufficiently large
and small T implies that a least-squares fit of a line to the corresponding
transformed data should have a slope close to zero. It is straightforward
to show that for a vector of Nr temperatures T and corresponding
realizations of the universal signal F, the least-squares slope can be
expressed as

2 F(DIT - T]

e

(26)

where T = N;' 3, T; is the sample mean temperature. It is also im-
portant to note that m is a linear operator in F, so that we may impose
the inequality constraints

—mg < m(T, F(T)) < my 27)

where m, and m;, are lower and upper bounds on the slope and F(T) is
the mean universal signal [computed according to Eq. (23)] evaluated
at the vector of temperatures T at which we expect the slope to vanish.
As before, scaling F to be ¢/(1) allows us to interpret m, and my, in terms
of fractional change per degree Kelvin. In the examples that follow, we
set m = 2.5 x 107* K~ *. Note that this limits change in the absolute
value of the universal signal to less than a 0.25% over a 10 K interval.
Fig. 8 shows the result of this analysis applied to the raw data in the
top-right plot of Fig. 7. Here we include error constraint according to
inequalities (24) with o = 0.03 (roughly 3%) relative error, but this is
not active. Amazingly, the slope constraint yields transformed data that
is visually indistinguishable from horizontal. The inset shows a closer
inspection of this data. As expected the average curve (dotted black) has
a total change in height that deviates by less than 1% of the scale.
Fig. 9 illustrates how sensitive inequality (27) is to data quality by
showing an example for which the constrained optimization is in-
feasible. In this case, it is impossible to satisfy the inequalities (24) and
(27) with o =0.03 and m, = m, = 2.5 x 10~ K . The inset in the
middle plot shows, for example, how the optimization algorithm was
unable to satisfy the error constraint. Closer examination of the top plot
shows that the high-temperature behavior of the blue curve is partly to
blame, as it displays an upward trend inconsistent with the other data.
The bottom plot shows the effects of removing this curve, which yields
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Fig. 8. Transformations of the data in the top-right of Fig. 7 with the constraints
given by inequalities (24) and (27). As before, the mean curve is in dotted
black. The inset shows the high temperature behavior of the data. Note that the
variation in average slope is less than 1% of the range of the data.

a feasible problem. Thus, the infeasibility of the optimization provides a
motivation for either holding out this dataset from the analysis or at
least considering its behavior in more detail.

5. Discussion, limitations, and conclusions
5.1. Objectivity of the method

As a general rule, data analysis is an inherently subjective endeavor.
This arises from the fact that no one has “direct access” to the under-
lying processes that create data.® Fluorescence-based measurements of
DNA, for example, rely on a chain of instruments to amplify micro-
scopic signals to make them accessible to an observer. Thus, the mea-
surements are at best indirect. Even the processes of signal amplifica-
tion demand an element of trust on the part of the instrument user
because they involve microscopic phenomena that are equally difficult
to audit. Data must therefore always be interpreted in the context that it
was collected. This defines the role of modeling [e.g. Eq. (1)] as the task of
providing that context. We have repeatedly emphasized this point be-
cause modeling is the point in analysis where subjectivity is first in-
troduced by way of choices about how to interpret data. As these
choices can have unexpected and/or unintended consequences on the
meaningfulness of an analysis, it is important to be open-eyed about
both their limitations and potential for misuse. These considerations
play a critical role in all extensions of the work we have presented and
therefore require further scrutiny.

We begin by addressing the question of how constrained optimiza-
tion provides context for interpreting fluorescence data. In the previous
sections we have demonstrated that physically motivated constraints
can lead to transformations of raw data that yield well behaved and
reasonable universal signals. However, comparison of Figs. 7 and 8
could lead one to conclude that the method forcibly transforms data to
behave as we wish, thereby providing meaningless and/or even mis-
leading context. The argument might proceed along the lines that, is-
sues of well-posedness aside, an analysis should allow data to “speak for
itself” more in the spirit of our minimal formulation of the optimization.

However, a more in-depth look at the latter provides contrast for
interpreting fully constrained optimization. In particular, the minimal
formulation determines the universal signal by solving Eq. (13) subject
only to the requirement that the data provide some meaningful

8 We mean this statement largely as it pertains to experimental data, but even
some simulation data arises from stochastic or chaotic behavior.
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Fig. 9. Example of dataset for which the affine transformations cannot si-
multaneously satisfy the error and slope constraints. Top: Original datasets.
Middle: The optimizer's best attempt at satisfying the inequality constraints and
minimizing the objective. Note that while the slope of the average curve is close
to zero at low temperatures, the individual curves deviate by more than
o = 0.03 from the mean. Bottom: The transformations are successful after re-
moval of the blue curve in the middle plot. (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of this
article.)

contribution.” The interpretation of this approach is that the “true”
transformation parameters are those that minimize the sum of differ-
ences-squared, all else being irrelevant. By analogy, this is like hiring
the smartest person one can find without regard to their qualifications
for the job. Constraints are therefore useful to ensure that we only
consider those candidates with the right qualifications, of whom there

9 As an aside, it is worth noting that an equivalent approach to our minimal
formulation can be achieved by setting 7,; = 1 and solving Eq. (12) without
additional constraints. This method scales all datasets to the first.
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may be none (infeasibility of the problem). Viewed in this light, con-
strained optimization provides a practical context for analyzing data by only
allowing those interpretations that are deemed to be physically meaningful.

Despite the usefulness of this approach, constraints introduce new
choices into the modeling process, and one must take care not to abuse
this freedom. This is more likely to occur through omission rather than
inclusion (too many constraints often leads to infeasibility; see Sec.
5.3). For example, the error constraint expressed via inequalities (24)
plays a critical role in ensuring that the slope constraints are applied
uniformly to each of our datasets. Without the former, it is almost
guaranteed that one could transform arbitrary data in such a way that
the mean universal signal satisfies inequalities (27), irrespective of any
wild behavior in the individual sets; see, e.g. Fig. 9. Thus, checks for
internal consistency between datasets must not be omitted in favor of
physically justified constraints.

Similar considerations apply to model construction in support of
either constrained or unconstrained optimization. In particular, it is
possible to postulate enough noise sources #,(T) that any collection of
random datasets could be brought into agreement consistent with ar-
bitrary (or no) constraints. This could be achieved, for example, by
assuming the #, (T) are Fourier modes on the domain of temperatures,
in which case the affine transformations would amount to a “filtering”
exercise that would always seem to magically collapse data. In this case,
the transformations are obviously meaningless, with the collapse being
a consequence of the mathematical fact that (essentially) any function
can decomposed into a collection of Fourier modes. More generally,
however, it is not necessary that the #,(T) have such a well defined
structure. Even postulating too many noise sources of arbitrary form
can span a large enough domain of functions, so that collapse is almost
guaranteed. Thus, it is critical that any realization of Eq. (1) have terms
that are rooted in rigorous modeling and/or experimentally validated phe-
nomena to avoid overfitting the data.

The examples provided in this manuscript suggest one route to
avoid such problems: construct noise terms directly from experimental
data. In particular, our background and baseline function #,(T) and
R(T) were built from measurements of various control experiments,
which therefore provided justification for using them in Eq. (5).
Moreover, we did not need to assume a functional form for these effects,
which removed our freedom to give them unnecessary structure. From
our broader perspective of UQ, this aspect of our approach is beneficial
because it reduces model-form errors and instills confidence that the
analysis assumes the minimum necessary to arrive at meaningful con-
clusions.

5.2. Generalizations of the analysis

5.2.1. Generic considerations

The analysis presented herein allows for many generalizations.
Roughly speaking, modification may take place at one of three stages:
model construction, choice of objective, and formulation of constraints.

While the first and third tasks are problem specific, we can make
general observations about the impact of their structure on the choice
of objective. In particular, the formulation of Egs. (6), (9) and (10) has
the important property of being a linear function of the unknown
coefficients p, mt, and p, despite the sources of fluorescence being non-
linearly coupled. In such cases, an objective function can always be
expressed as a quadratic function [i.e. sum of differences squared, in the
spirit of Eq. (12)], which facilitates quadratic programming if the
constraints are linear. Nonlinear models in the unknown coefficients
can also be employed, but in such cases the objective function may be
more complicated and/or not amenable to well-established optimiza-
tion algorithms. We leave such tasks for future work.

Regarding the objective, our choice of the L? norm [i.e. the sum of
differences squared between signals in Eq. (12)] seems well suited for
the task at hand. However, equally useful transformations would likely
arise from norms of the form
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P
Ly ({F) = D) |M&: %, B) - M(F; ¢, B)
T (28)
for p > 0, or even more generic measures of “distance” in the spirit of
the Kullback-Leibler divergence [22]. In a related vein, one could
imagine weighting temperatures in the objective differently so as to
enforce agreement more strictly in certain regions.'” Finally, we have
assumed no uncertainty in the temperature variable, which may not be
realistic for all PCR protocols. Thus, “orthogonal” objectives that
minimize perpendicular distances (instead of vertical distances) be-
tween curves may be appropriate in some cases. In all of these situa-
tions, however, increased complexity of the objective will induce ad-
ditional computational costs.

5.2.2. Comparison of FRET pairs, intercalating dyes, and related systems

In the context of affine transformations, FRET pairs and inter-
calating dyes should yield identical universal signals F(T). However,
the corresponding melt curves differ in several fundamental ways, so
that experimental design and analysis considerations must be tailored
to each system. We discuss such issues now.

In quantitative data analysis, both FRET pairs and intercalating dyes
exhibit baseline physical behavior that may contribute a temperature-
dependent response to the measured fluorescence signal independent of
their interactions with the DNA; see Egs. (6) and (9). As mentioned in
Sec. 2.2, this baseline fluorescence may change with the local en-
vironment (i.e. quenched versus unquenched states), which should be
characterized experimentally if deemed to be relevant. (For our pur-
poses we ignored differences between these two states.) Moreover, both
FRET pairs and intercalating dyes can modify the thermodynamics of
hybridization, although it is far easier to do so accidentally by adding
the latter in too high of a relative concentration. Such considerations
are largely system specific and could depend, for example, on other
temperature-dependent changes to the secondary structure
mediately adjacent to a fluorophore.

Because FRET pairs are typically bonded to 5' or 3' positions of DNA,
and energy transfer only occurs when their separation is between 1 and
10 nm, the local environmental states are easier to characterize. By
contrast, fluorescent dyes are relatively promiscuous molecules which
will intercalate between base pairs or bind to the backbone, resulting in
a several order of magnitude increase in fluorescence [23]. Owing to
their non-specific nature, dyes have access to many more “local en-
vironment” states. These include: (i) free dye; (ii) ssDNA bound dye;
(iii) dsDNA bound dye; and (iv) and potentially AT/GC sequence de-
pendent variations for both ssDNA and dsDNA. Given that each of these
states may have a different temperature-dependent baseline fluores-
cence behavior, a model of such systems might take the form

im-

(1) = d; 1 F(T)R(T) + G 2 F(T)Ry(T)+...

+ G F (TR, (T) + b;B(T) + &, (29)

where (as before), the index i corresponds to the experimental reali-
zation and d;; corresponds to the relative fraction of molecules in local
environment state j having baseline rate R;(T), assuming n total such
states.

We also note that our methods are likely to be useful for analyzing
experiments in which other mechanisms (e.g. static quenching) control
the fluorescence; see, e.g. Ref. [24]. In such cases, it may be possible to
carry over our analysis with few (if any) modifications, provided the
low and high-temperature asymptotic behaviors of an idealized signal
are constant. However, it is important to recognize that the affine
transformations do not set an absolute scale for the universal signals,
which requires outside information about the system. In the FRET

1%Tn more mathematical language, we could make our objective function
non-convex.
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experiments, this information was extracted by the observation that the
fluorophores are all off or on at low and high temperatures. As this will
not in general be true, it may be necessary to impose additional con-
straints that set an appropriate scale of the data. Such issues are the
topic of a manuscript in preparation.

In a related vein, we anticipate that our approach can be applied to
non-equilibrium PCR curves associated with fast heating rates. In such
cases, the degree to which any given sample is out of equilibrium will
likely correlate strongly with the sample size, since larger volumes re-
spond more slowly to temperature changes. Thus, the relative error
constraint may play an important role in assessing the extent to which
the samples are uniformly out of equilibrium.

Ultimately, however, models of the fluorescence efficiency, its
temperature dependence, and the various local environmental factors
will depend on the system at hand for FRET pairs, intercalating dyes,
and other potential systems of interest. In all such cases it is critical that
one evaluate the assumptions as to which effects may be ignored,
preferably at an early stage so as to facilitate later data analysis and
uncertainty quantification.

5.2.3. Comparison with methods based on finite-differences

A large class of high-resolution melt (HRM) PCR measurements at-
tempt eliminate background effects by computing finite-differences of a
melt curve and defining T,, as the location of the corresponding global
maximum. In the present work, we refrain from such techniques due to
considerations arising from UQ. While a detailed discussion of such
issues is best reserved for a separate manuscript, we highlight several
key points.

For one, it is well known in the mathematics and physics community
that finite differences amplify noise. This observation stems from the
recognition that noise » in experimental systems if often not differ-
entiable or even continuous. Thus, finite differences of the form

7t + At) — 5(t)

= ((g/At),
At (o/Ar)

(30
[where t is a continuous parameter such as temperature, and ¢ > 0 is
the standard deviation of 5] tend to blow up as At becomes small.'*
Such phenomena complicate measurement and uncertainty quantifi-
cation because data analysis routines must contend with increased
variation in the data. Moreover, smoothing techniques do not ne-
cessarily simplify the problem, since these can add layers of subjectivity
whose impacts on measurements can be difficult to quantify.

In addition to this, Eq. (5) reveals that finite differences do not
eliminate background effects and temperature-dependence of fluorophores.
Explicitly computing the maximum in terms of the derivative yields

&[F'(T)R(T) + F(T)R'(T)] + b;B'(T) = 0. (31)

In general, the temperature for which this equation is true does not
correspond to F'(T) = 0, owing to non-trivial dependence of R(T) and
B(T) on T. Given that these quantities can lead to variations of 10% or
more in the total fluorescence, it is likely that they may severely bias
estimates of T, if not properly addressed as part of the data analysis.

We also note that the definition of T,, for the DNA systems con-
sidered here is ambiguous, which affects comparison with finite-dif-
ference approaches. Fundamentally this issue arises from the fact that
molecular disassociation of DNA occurs over a range of temperatures
(as opposed to a single melt temperature) and is a manifestation of the
Boltzmann statistics for this process. The melt curve can be likened to a
cumulative distribution function, while its derivative is the corre-
sponding probability density function (PDF). Ambiguity therefore arises
from the way in which we extract a single number, i.e. T, from a
probability distribution. Computing this quantity from the maximum of

1 Technically speaking, the equality in Eq. (30) should be understood as
being true in an average sense.
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the PDF defines the melt temperature in terms of a mode, whereas the
definition that we use is a median. In general, these quantities will not
be the same, and care must be taken when such estimates are to be
compared with the results of other measurement techniques.

5.3. Constraints that may be problematic

The behavior implied by Eq. (7) is local in the sense that it char-
acterizes the behavior of a function at a point. With noisy data sampled
at discrete intervals (e.g. temperatures), it can be difficult to deduce this
type of behavior with significant accuracy. Indeed, this phenomenon is
well understood in terms of the maxim that “derivatives amplify noise.”
In the context of the examples discussed herein, we could have replaced
the least-squares estimate of slope [Eq. (26)] with a finite-difference
approximation (and in fact we tried this). However, the resulting in-
creased noise in this estimate would necessitate such large bounds m,
and my, in Eq. (27) that it would become meaningless. The use of Eq.
(26) was therefore justified on the grounds that a non-local character-
ization of the behavior of F(T) yields more stable estimates of slope.
The more general takeaway is the observation that local or point-wise
estimates of change should be avoided when formulating constraints. It
is important to distinguish these from point-wise estimates of the
function value itself. For example, inequality (24) can be computed at
each temperature because the aim is to constrain fluctuations about a
mean at a common value of T.

It is also important to keep in mind that constraints always decrease
(or more accurately, never increase) the domain of possible solutions to
Eq. (13). Thus, adding too many increases the chances that a for-
mulation of the optimization will be infeasible. One should take care
not to overconstrain the problem, lest physically meaningful solutions
be unnecessarily excluded from consideration.

5.4. Extensions of UQ

While a primary goal of this work is to formulate the analysis in a
way that facilitates UQ, our main focus is validation, i.e. tasks that assess
the extent to which a model accurately describes the data. Uncertainty
propagation, the process of estimating uncertainty in a prediction based on
variability in inputs (e.g. raw data) remains largely outside of our scope. In
general, this latter task is best reserved for downstream or decision-
making analyses that leverage information about fluorescence data,
since each one will have its own requirements that inform uncertainty
budgets, methods of estimating uncertainties, etc.

We emphasize, however, that the constrained optimization method
we propose is amenable to a variety of numerical propagation techni-
ques, in large part because it is inexpensive to run. Among the simplest
are Monte Carlo style approaches in which an analysis is repeatedly
applied to different realizations of a dataset to generate a distribution of
predictions. In the context of our hierarchical modeling Egs. (6), (9) and
(10), this could be done as follows. First, compute transformed reali-
zations B;(T) of the background signal through the procedure described
in Sec. 4. Next, use each of these realizations to estimate independent
realizations of R(T). Given, for example, 12 experimental datasets for
B;(T) and 12 for R(T), this would yield 144 total realizations R;;. We
could then combine these estimates with additional datasets for F(T).
Twelve such experiments would yield 1728 distinct realizations
Fj«(T), which could then be propagated through some downstream
analysis to quantity X; ;. While these datasets would not necessarily be
statistically independent, their range of corresponding estimates would
nonetheless provide an empirical and reasonable confidence interval
for the mean value of X, for example.

Fig. 10 provides a small illustration of this exercise using 12 ex-
perimental datasets for F(T) with R(T) and B(T) taken as their mean
values from 12 to 24 experimental realizations of these quantities, re-
spectively. Here we have performed a van't Hoff analysis on the data,
fitting the function
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Fig. 10. Van't Hoff analysis of data according to Eq. (33). The qualitative
agreement with theory suggests that the affine transformations have produced
meaningful interpretations of the raw data.

_ F(T)
T 1-F(T) (32)

(normalized to [0.1]) to the function

log(K) = + AS,

(33)
where AH, is the enthalpy change upon DNA melting, and AS; is the
entropy change upon melting (i.e. F(T) = 1/2). [Full details of the van't
Hoff analysis and experimental procedure are provided in Ref. 11 and
will not be repeated here.] By propagating 12 datasets through this
analysis, we recover uncertainty estimates that are small enough to
reveal the anticipated behavior of this data. See Ref. 11 for more de-
tails.

5.5. Final thoughts: overarching perspectives on data analysis

Data analysis is so fundamental to science that it is sometimes seen
as routine, if not mundane. Indeed, the availability of software
packages that facilitate the implementation of various fitting algorithms
can lead to the misconception that data analysis itself is easy.

A primary objective of our manuscript has been to counter this
perspective by resurfacing many of the challenges of data analysis as
they pertain to fluorescence characterization of DNA binding. Our ap-
proach has been to recast this task as an exercise in mathematical
modeling, which reveals its most difficult elements: model formulation

Appendix. Experimental details
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and validation of underlying assumptions. Invariably, the difficulty in
these elements arises from their subjectivity. Good models may be in-
formed by generations of empirical knowledge, but they remain (edu-
cated) guesses nonetheless. Validation thus becomes an exercise in as-
suring oneself that a guess is still a useful tool for extracting information
about a system and making predictions. This begs the question: when
has a model been sufficiently validated?

While we cannot answer this question because it is situation de-
pendent, we have provided computational tools that can help scientists
more efficiently address it for themselves. Specifically, we have de-
monstrated how modeling and validation can be integrated into a single
task by way of constrained optimization. In the past these have often
been treated separately, leading to the possibility that costly experi-
ments and modeling would be carried out, only to be invalidated at the
very end. In other fields (e.g. materials modeling), we are even aware of
instances in which lack of internal validation in the data analysis is a
primary contributor to unacceptably large uncertainties and/or mis-
leading predictions [25]. Thus, another goal of our work has been to
promote a new perspective, namely that UQ (in its broader sense) can
and should be more tightly integrated into both modeling and data
analysis. Ultimately we believe that such practices will lead to more
robust measurement protocols and facilitate reproducibility in the
biology community.
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We provide a brief overview of the experimental details; see also Table 1. See also Ref. [11] for more details.

We considered all combinations of DNA systems based on the M13mp18 genome or “scaffold”. Thirteen different fold geometries were produced
by varying the anchor sequence (Fig. 1). Five different persistence lengths were generated by converting different proportions of the ssDNA scaffold
to dsDNA by using sets of complementary 32 and/or 37 base oligomers, at locations distant from the fold and fluorophore-labeled oligomers. For
each pair of design parameters, we generated 12 replicates of the system in order to quantify measurement uncertainties. (However, infeasibility of
the optimization leads us to exclude some datasets.) To ensure a consistent sampling of pipetting error simultaneously with manageable sample
preparation, 12 replicates of all buffer and oligomers except the fold oligomer were independently prepared. These master replicates were used as a
base stock for the 12 replicates of each fold distance by multichannel pipettor through the two plates for each scaffold persistence length. As such,
pipetting variability within any fold distance is uncorrelated. However, uncertainties arising from pipetting are correlated between replicates of
folding distances.

The scaffold used was M13 MP18 ssDNA acquired from Tillibit.'? DNA oligomers were acquired from Integrated DNA Technologies. Modified
oligos were HPLC purified and unmodified oligos were not purified at all before use. Cacodylate buffer, at 50 mM, was used for its ability to hold pH
constant with temperature and was acquired in 8x stock from Electron Microscopy Sciences. The buffer was supplemented with Magnesium Acetate
at 12.5 mM. To minimize extraneous signal, all other oligomers were added in excess of the fluorophore oligomer, as shown in the Table 1.

12 Gertain commercial products are identified in this work in order to specify the experimental procedure adequately. Such identification is not intended to imply
recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are
necessarily the best available for the purpose.
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To generate fluorescence curves, we used a StepOnePlus Real-Time PCR, with a melt protocol consisting of an initial denaturing step (80C for

1 min), an annealing sequence (75C-15C, 0.61C steps, 3.5 min hold) and finally melting (15C-75C, 0.61C steps, 3.5 min hold). The raw fluorescence
intensity in the green channel was used in place of the (internally computed) multicomponent intensity, since uncertainties associated with the latter
were unknown.

as well as 24 empty wells.

Table 1
Concentrations of oligomers in each sample.

In addition to these experiments, we also repeated fluorescence measurements on 12 replicates of a baseline control containing no fold oligomer,

Absolute Excess
Concentration (Relative to scaffold)
Scaffold 45 nM -
Fold Strand 225 nM 5%
Quencher 450 nM 10x
Fluorophore 30 nM 0.67x
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